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"ITER TO THE EDITOR 

A Schwinger boson approach to Heisenberg antiferromagnets 
on a triangular lattice 

C J Gazza and H A Cecratto 
lnstifuto de Fisica Rosario, Universidad Nacional de Rosario, B o u l d  27 de Febrero 
210 Bis, 2MH) Rasario. Argentina 

Received 10 November 1992 

Abstraei The ground-state propenies of generalized S = Heisenberg antiferromagnek 
on a triangular lattice are studied by means ot the Schwinger boson approach. The 
generalizations considered include second-neighbour inleractions and nearest-neighbour 
couplings breaking the rotational symmetry of the lattice. Unlike in previous w r k  
using the same represenlation of spin operators, good quantitative agreement with exact 
numerical resulk and wiIh other approximate methods is obtained. The resulfs pomt to 
the existence of magnetic long-range order, with a local magnetization M = 0.275 for 
the standard nearesl-neighbour model. 

The ground-state structure of the triangular-lattice Heisenberg antiferromagnet 
("A) has been debatable for a long time [I]. Recently, the hunt for exotic spin- 
liquid states in connection with magnetic mechanisms of high-T, superconductivity 
[2] has generated a new surge of interest on this problem. However, there is now a 
steadily growing conviction, with support from a variety of methods [3-5], that the 
model displays the conventional threesublattice N6el order in its ground state, even 
in the strong quantum limit S = $. 

We have recently shown [6] how to apply the Schwinger boson technique to 
general hehagnets, studying the J1-Jz-J3 model on the square lattice as an example. 
The beauty of this approach resides in its capability of describing different ground- 
state structures in an unified formalism, without biasing the calculation in an obvious 
way toward the existence or non-existence of magnetic long-range order. Moreover, 
by comparison with exact results on finite lattices the method proved itself to be 
quantitatively accurate beyond previous expectations. 

In view of the above, and since classically the TLHA is a commensurate hermagnet, 
it seems worthwhile to reconsider this model by means of the Schwinger boson 
approach as developed in [6]. We stress here that this representation of spin operators 
has already been used in studies of the TLHA 17,8], although without quantitative 
success for the reasons given in our previous work, and further discussed below. 
In contrast, here we will show, again by comparison with exact results on finite 
lattices, that the Schwinger boson approach is capable of producing remarkable good 
predictions for the energy, and also magnetization values in rough agreement with 
results obtained by other approximate methods [3,4]. 
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Our interest will be focused on ground-state properties of generalized S = 1 
Heisenberg models, 

(1) 
l N  H = - J~,S,*S,, 

mu 
2 

with arbitrary couplings Jmr between sites 2, g of a triangular lattice. The 
generalizations considered mclude second-neighbour interactions and nearest- 
neighbour couplings breaking the rotational symmetry of the lattice. The motivations 
for studying these models are discussed below. We replace spin operators in terms 
of the Schwinger representation by S, = $a,t.u.a,, where the bosonic spinors 
a, = (aet,a,,) must satisfy the local constraint a,t.a, = 25 in order to have a 
faithful spin S representation of the algebra. In this way Hamiltonian (1) becomes 
quartic in Bose operators, requiring some kind of approximation to be solved. We 
have shown in [6] that a natural, rotationally-invariant Hartree-Fock decomposition 
of (1) is given by: 

(Se*S& = (BzuB& - AIy&, + HC) - ((s,*s,)m) (2) 

where the operators & = f E, uueoay-, t t  and B!, = E, azOauO. t The 
variational parameters AI,, B-, satisfy A,, = (&,) and B., = (&,) to achieve 
full autoconsistency. Then, from the mean value 

((S,.S,)m) = 1 ~ , , 1 2  - IA,J 

one can see that (the squared modulus of) A,,, and Be, represent respectively 
the antiferromagnetic and ferromagnetic correlations between spins at sites z and 
g. In the following we will take these parameters to be real, which means that we 
are not considering flux phases. Since the formalism is completely invariant under 
rotations, by a judicious choice of A,, and Be, we can in principle describe any 
sort of (ordered or disordered) non-magnetic structure in the ground state of (1). 
The possibility of having magnetic long-range order is incorporated in the theory by 
allowing the Schwinger bosons to condense [q. As stated above, in this way we have a 
unsed formalism, capable of describing any possible ground state. Notice also that in 
this approach there is no need to partition the lattice into different sublattices nor to 
perform any rotation of spin operators to a local reference axis [SI, as is customarily 
done in standard spin-wave theory. The advantages of using simultaneously the ferro 
and antifem ChaMek in decoupling (2) over previous approaches in the literature 
[7] have been discussed in 161, where it was shown that in this way one obtains very 
good qualitative and quantitative agreement with exact numerical results. 

The Hartree-Fock Hamiltonian (l), (2) can be diagonalized by going to 
momentum space and performing a standard Bogoliubov transformation. If the 
system has incommensurate (spiral) magnetic order, for S + M the parameters 
A,, - Ssin(Q/Z).(g - z) and Be, - Scos(Q/2).(g - z), where Q is the spiral 
wave-vector. Then, in order to treat this case it is convenient to perform a Fourier 
transform on Bose operators as Q, = (1/N) E, aqre-iP.a , where q = k - (Q/2), 
k represents the normal modes corresponding to periodic boundary conditions, and 
Q has to be found by minimizing the energy. Carrying out this program one gets 
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( y B ( q )  - - y i ( q )  and ground-state the quasiparticle dispersion relation wq = 
energy E, = 4 E, wq + (S + f ) X N .  We have defined 

and X is the Lagrange multiplier that enforces (on average) the constraint on the 
number of bosons per sire: 

The consistency conditions are given by 

The set of equations (3), (4) determine A, 4" and B,,, and the longer the range of 
JZv the larger is the number of parameters A-", Bay to be determined. For finite 
systems these equations have to be solved for values of Q chosen from the normal 
modes of the lattice (because of the periodic boundary conditions), in order to find 
the one which minimizes the energy. For infinite lattices, and in the case where one 
has long-range magnetic order, equation (3) decouples from (4) and only determines 
the magnetization originated in the Bose condensation at the magnetic wvevector 
Q [9]. In such a case X keeps to the value y B ( Q / 2 )  + y,,(Q/2), which produces 
the correct zero-mode (Goldstone) structure at k = 0,Q. Furthermore, to determine 
the (quasi)continuous variable Q one adds the equations BE,/BQ = 0, which, by 
means of the chain rule for derivatives, can be shown to be equivalent to BX/aQ = 0. 
In passing we note that since classically X - J ( Q )  = C,J(z)e-'@". this last 

.equation is the quantum equivalent of the classical condition which determines Q 
in the large4 spin-wave theoty. For non-collinear magnets the non-zero value of 
the antisymmetric order parameter &," implies a parity-breaking pairing of bosons 
[6], whose consequences can he related to those connected to the inclusion of cubic 
(in Bose operators) terms in the Hamiltonian of the standard spin-wave approach to 
heliagnets [lo]. 

We have numerically solved equations (3) and (4) for .Tau coupling a site with 
its first (J1) and second (J , )  neighbours Classically 1111, the second-neighbour 
interaction allows one to move the magnetic wave-vector from Q = (F,O) for 
0 Q Jz < %JI (corresponding to the threesublattice N6el order, or commensurate 
spiral order), to Q = (O,%) for %J,  < J, < J1 (which produces a collinear spin 
arrangement, antiferromagnetic along two sides of a triangle and femmagnetic along 
the third one). For larger values of J ,  the system becomes an incommensurate 
heliiagnet, with Q moving continuously from Q = (O,%) to Q = (O,$). 

In figure 1 we plot our result for the energy per bond of a 12-site lattice as a 
function of the patio J 2 / J ,  for spin S = i. One can see that for this finite lattice 
there is a remarkable agreement with exact numerical results taken from [Ill.  In the 
same figure we show the corresponding result for the infinite lattice. In particular 
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for the nearest-neighbour model we obtained E = -0.1899, a value which should 
bc compared with E, = -0.183 rt 0.003, coming from numerical diagonalization 
of small clusters [12], E,, < -0.179, obtained by variational methods [3], and 
E, = -0.180 and -0.182, predicted by different versions [4,5] of the spin-wave 
theory. In contrast to the findings for the square lattice with further-neighbour 
interactions 161, there seems to be no non-classical (nonmagnetic) phase in any region 
of coupling space. In figure 2 we plot the local magnetization M ( Q )  corresponding 
to the different phases, as obtained from the long-distance behaviour of correlation 
functions: limle-u14m(S&3u) M Z ( Q )  cosQ . (z - U). (Actually M ( Q )  can be 
obtained from (3) by stratghtfolward generalization of the considerations in [9].) For 
J, = 0 we obtained M = 0.275, a value strongly reduced from its classical maximum 
by the quantum fluctuations, although not as low as predicted by standard spin-wave 
calculations [4] (Mw = 0.239). For the sake of comparison, the variational result 
for the energy in [3] was obtained with a sublattice magnetization M,, = 0.34. The 
value we obtained is not too far from the corresponding result for the square lattice 
M = 0.303, despite the lack of frustration in this last case. We believe that the 
inherent frustration of the triangular lattice is somehow compensated by its large 
coordination number, which helps in sustaining magnetic order. 

-0.50 
0.00 0.30 0.60 ago 

JJJi 
Figure 1. Energy per bond for the n u A  with 51x1- 
(51) and second-(&) neighbour interactions. . . - . 
is our predidion tor a 12;sife lattice. Poinls are 
exact numerical results from [U]. - - - is the 
corresponding result for Ihe energy in the Ntel 
phase as obtained from the theory developed in 
[SI. - is our prediction for the infinite lattice. 
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Jsi 
Figure 2. Local magnetization in the different 
phases. The full cuwes indieale the eEective 
stability regions of each phase. There is a first- 
order transition f” Nkl to collinear order at 
Jz/Jt  z 0.16, and a continuous transition from 
this collinear order to an incommensurate spiral 
phase at Jz/  5, z 0.95. 

In order to compare more closely with the situation for the square lattice, we have 
also considered the nearest-neighbour model with the coupling along one side of a 
basic triangle ( J ; )  different from the value on the other two sides. In this way the 
triangular lattice can be considered a distorted square lattice with second-neighbour 
interaction along one of its diagonals, a model which classically displays a continuous 
deformation from N6el order (Q = (T, 5)) for Ji = 0, to commensurate spiral 
order (Q = ( $ E ,  0)) for J; = 5,. The results obtained are plotted in figure 3. As 
can be seen, switching on the frustrating interaction Ji decreases the two-sublattice 
magnetization of the distorted square lattice. When J;  reaches a value near 0.6, 
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the system prefers to start rotating the local magnetization instead of reducing it 
further, going continuously into a spiral phase. At J; = 5, the wavevector Q 
ammodates perfectly to the triangular lattice, and the system displays the three 
sublattice Nkel order with sublattice magnetizations pointing at 120° to each other 
(commensurate spiral). Since the square lattice is believed to be Nee1 ordered [13], 
the smooth behaviour between the extreme values of J; SUPPOI@ our conviction about 
the existence of magnetic long-range order in the TLHA. 

# 
v -~~j qo.20 0.15 

0.10 
OM) 0.25 07j, 0.75 1.00 

Fgnre 3. (a) Energyper sile, ~ (b) local magnetization, for the nearest-neighbour TLHA 
with couplings breaking the rotational ynmetly of the lattice. For .Ti = 0 the system 
reduces to a Heisenberg model on a distorted square lattice, while for J; = Jl one 
regains the symmetry of the triangular lattice. The broken curves represent the behaviour 
of energy and magnetization when the spiral wawector is k k e d  at Q = (K, 3), 
corresponding to the distorted square lattice, 

A few final commenis in connection with related works in the literature on the 
"A. Yoshioka and Miyazaki [7J have recently considered the nearest-neighbour 
TLHA using a simiiar Schwinger boson approach. Leaving aside minor details, the 
main difference between theu work and ours comes from their introduction in the 
Hamiltonian of a term which vanishes because of the exact (operator) form of the 
constraint. In this way they simplify the Hamiltonian, which bemmes a function 
only of the RvB-like parameter Azw. However, since the restriction on the number 
of bosons per sile is imposed on average, this term gives an incorrect, sizeable 
contribution to the ground-state energy. Ritchey and Coleman [SI have also applied 
the Schwinger boson approach to the TLHA. They introduce into the theory the 
arbitrary condition (SL A S;) = 0, as a way of determining a privileged twisted 
reference frame (the prime on spin operators means that they are referred to the 
local quantization axis). This condition is satisfied automatically by collinear magnets. 
However, in the spiral phase the vector product between spin operators must be 
allowed to be different from zero in order to have quantitative agreement with exact 
results (see figure 1). 

HAC acknowledges partial financial support from Fundacidn Antorchas. 
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